Stan Seba _ Suddenly Here (Original Mix) BEST
When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.
Stan Seba _ Suddenly Here (Original Mix)
Download Zip: https://www.google.com/url?q=https%3A%2F%2Ftinourl.com%2F2udvAV&sa=D&sntz=1&usg=AOvVaw25DK6OeBlSJYsFEv2593xl
Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495
Many peatlands previously drained for peat extraction or utilized for agriculture (directly or after partial cutoff) are left abandoned during last decades in Europe, and especially in its eastern part. In the European part of Russia alone, several million hectares of peatlands have been modified for peat extraction and agriculture by direct water level draw-down and nowadays are not under use by economic reasons. This makes up one of the most serious and urgent problems of wise use and management of peatlands in these regions with serious feedback to people, environment and economy (Quick Scan of Peatlands in Central and Eastern Europe, 2009). Drainage for agriculture leads to peat oxidation resulting in substantial emissions of greenhouse gases (carbon dioxide and sometimes nitrous oxide) to the atmosphere. Together with peat fires this is the most significant negative input of peatland degradation to climate change (Assessment on Peatlands Biodiversity and Climate Change, 2008; Peatlands and Climate Change, 2008). Besides that, dehydrated peatlands often release methane. Starting from 2003, the effect of drainage and subsequent utilization of peatlands on the emissions of carbon dioxide and methane was studied in Tomsk region (West Siberia) during the summer-fall periods (Glagolev et al. 2008). The measurements were conducted by chamber method at peatlands drained for use as croplands (now partly being fallows) and peat cutting (currently abandoned or reclaimed for forest planting, haying, or pasturing), as well as at a wide range of undrained oligotrophic, mesotrophic, and eutrophic mires and burnt mire areas of different regeneration stages. The statistical analysis of data from a large number of study sites indicated a higher release of carbon dioxide from disturbed peatlands compared to undrained ones. At the same time some drained peatlands had considerable methane emission rates, additionally enhanced by the intensive efflux from the surface of drainage
Increased cellular ATP levels have the potential to enhance athletic performance. A proprietary blend of ancient peat and apple extracts has been supposed to increase ATP production. Therefore, the purpose of this investigation was to determine the effects of this supplement on athletic performance when used during 12 weeks of supervised, periodized resistance training. Twenty-five healthy, resistance-trained, male subjects completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extract (TRT) or an equal-volume, visually-identical placebo (PLA) daily. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2 week overreach and a 2 week taper phase. Strength was determined using 1-repetition-maximum (1RM) testing in the barbell back squat, bench press (BP), and deadlift exercises. Peak power and peak velocity were determined during BP at 30 % 1RM and vertical jump tests as well as a 30s Wingate test, which also provided relative power (watt:mass) A group x time interaction was present for squat 1RM, deadlift 1RM, and vertical jump peak power and peak velocity. Squat and deadlift 1RM increased in TRT versus PLA from pre to post. Vertical jump peak velocity increased in TRT versus PLA from pre to week 10 as did vertical jump peak power, which also increased from pre to post. Wingate peak power and watt:mass tended to favor TRT. Supplementing with ancient peat and apple extract while participating in periodized resistance training may enhance performance adaptations. ClinicalTrials.gov registration ID: NCT02819219 , retrospectively registered on 6/29/2016.
Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group. The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adenosine-5'-triphosphate (ATP) is primarily known as a cellular source of energy. Increased ATP levels may have the potential to enhance body composition. A novel, proprietary blend of ancient peat and apple extracts has been reported to increase ATP levels, potentially by enhancing mitochondrial ATP production. Therefore, the purpose of this investigation was to determine the supplement's effects on body composition when consumed during 12 weeks of resistance training. Twenty-five healthy, resistance-trained, male subjects (age, 27.7 4.8 years; height, 176.0 6.5 cm; body mass, 83.2 12.1 kg) completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extracts (TRT) or placebo (PLA). Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2-week overreach and a 2-week taper phase. Body composition was assessed using dual-energy X-ray absorptiometry and ultrasound at weeks 0, 4, 8, 10, and 12. Vital signs and blood markers were assessed at weeks 0, 8, and 12. Significant group time (p 041b061a72